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Abstract 

Background:  The temporal progression of many fundamental processes in cells and 
organisms, including homeostasis, differentiation and development, are governed 
by gene regulatory networks (GRNs). GRNs balance fluctuations in the output of their 
genes, which trace back to the stochasticity of molecular interactions. Although highly 
desirable to understand life processes, predicting the temporal progression of gene 
products within a GRN is challenging when considering stochastic events such as tran-
scription factor–DNA interactions or protein production and degradation.

Results:  We report a method to simulate and infer GRNs including genes and bio-
chemical reactions at molecular detail. In our approach, we consider each network 
element to be isolated from other elements during small time intervals, after which 
we synchronize molecule numbers across all network elements. Thereby, the temporal 
behaviour of network elements is decoupled and can be treated by local stochastic 
or deterministic solutions. We demonstrate the working principle of this modular 
approach with a repressive gene cascade comprising four genes. By considering a 
deterministic time evolution within each time interval for all elements, our method 
approaches the solution of the system of deterministic differential equations associ-
ated with the GRN. By allowing genes to stochastically switch between on and off 
states or by considering stochastic production of gene outputs, we are able to include 
increasing levels of stochastic detail and approximate the solution of a Gillespie simula-
tion. Thereby, CaiNet is able to reproduce noise-induced bi-stability and oscillations in 
dynamically complex GRNs. Notably, our modular approach further allows for a simple 
consideration of deterministic delays. We further infer relevant regulatory connections 
and steady-state parameters of a GRN of up to ten genes from steady-state measure-
ments by identifying each gene of the network with a single perceptron in an artificial 
neuronal network and using a gradient decent method originally designed to train 
recurrent neural networks. To facilitate setting up GRNs and using our simulation and 
inference method, we provide a fast computer-aided interactive network simulation 
environment, CaiNet.

Open Access

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Hettich and Gebhardt ﻿BMC Bioinformatics           (2022) 23:13  
https://doi.org/10.1186/s12859-021-04541-6 BMC Bioinformatics

*Correspondence:   
christof.gebhardt@uni-ulm.de 
Institute of Biophysics, 
Ulm University, 
Albert‑Einstein‑Allee 11, 
89081 Ulm, Germany

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-021-04541-6&domain=pdf


Page 2 of 30Hettich and Gebhardt ﻿BMC Bioinformatics           (2022) 23:13 

Conclusion:  We developed a method to simulate GRNs at molecular detail and to 
infer the topology and steady-state parameters of GRNs. Our method and associated 
user-friendly framework CaiNet should prove helpful to analyze or predict the temporal 
progression of reaction networks or GRNs in cellular and organismic biology. CaiNet is 
freely available at https://​gitlab.​com/​Gebha​rdtLab/​CaiNet.

Keywords:  Gene regulatory network, Transcriptional bursting, Gene expression noise, 
Hybrid deterministic–stochastic simulation, Network inference

Background
Dynamics and progression of many fundamental processes in cells and organisms, 
including metabolism [1, 2], the cell cycle [3], the circadian clock [4], differentiation [5, 
6] and development [7] are governed by GRNs. These networks generally control the 
activity of genes by regulatory motifs such as feedback or feed forward loops [8, 9], 
which ensure spatially and temporally controlled gene expression. A striking property of 
gene transcription is its distinct stochastic behavior. Rather than producing their prod-
uct continuously, most genes stochastically transit from an inactive state into an active 
state where they produce the gene product [10, 11]. During the on-time, which often 
is short compared to the off-time, a burst of expression occurs that might significantly 
increases the expression level. In combination with stochastic production (birth) and 
degradation (death) processes, this leads to complex stochastic trajectories of gene prod-
ucts. This noise of gene expression was shown to play an important role in decision mak-
ing within GRNs [12–15]. Furthermore, theoretical work suggests that this stochastic 
behavior can influence the functionality of networks such as the circadian clock [16, 17] 
and the pluripotency network [18, 19].

To model and simulate the average temporal behavior of GRNs, ordinary differen-
tial equations (ODEs) and corresponding solvers are well established [20, 21]. To add 
stochasticity, the Langevin method adds normal distributed gene product noise to the 
system, assuming that all reactions in the system went through multiple discrete reac-
tion events during a single simulation time step [22]. While this method achieves a 
reasonable description of systems with large molecule numbers, it does not explicitly 
account for gene on/off switching. An exact approach to simulate stochastic processes 
is the Gillespie direct method [23]. In this method, two random numbers drawn from a 
probability distribution comprising all possible reactions in the network determine the 
time point and the type of the next reaction event. In this approach, the duration of a 
time-step is limited by the fastest occurring reaction in the network. Thus, for networks 
including large molecule numbers or reactions with fast rates that occur on a timescale 
much shorter than the total simulation time, the Gillespie direct method is computa-
tionally expensive. To mitigate this problem, the tau-leaping method has been developed 
[24]. There, a simulation time step may span over several reaction events. The number 
of reaction events that occurred during a time step is approximated by an average num-
ber. This method requires additional modifications to prevent negative particle numbers 
[25] and to calculate step sizes [26]. To further speed up simulations, hybrid approaches 
that combine all of the aforementioned approaches have been developed [27–31]. These 
approaches treat specific reactions in the network with different algorithms. To do 
so, complex considerations to decouple a generic network have to be performed [27]. 

https://gitlab.com/GebhardtLab/CaiNet
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Considering special cases of networks, i.e. networks with genes stochastically switching 
between on and off states, led to more effective dedicated hybrid stochastic determinis-
tic simulation approaches [32]. However, a dedicated hybrid approach capable of mod-
eling gene product synthesis in detail and providing biochemical reactions to simulate 
signaling pathways is still missing.

The inverse problem to simulating expression levels of GRNs with given parameters 
is to infer parameters and connections between genes from a set of given gene product 
levels, knockout data or time trajectories. A prominent approach to infer the topology 
of networks is based on Boolean interactions [33, 34]. Another approach looks for cor-
relation coefficients [35] between steady state networks. Furthermore, linearized differ-
ential equations have been used to fit experimental data [36]. Using knockout data, a 
confidence matrix for network interactions was obtained [37]. Recent progress to the 
inference problem has been made using time trajectories of gene product levels [38–
41]. Approaches such as WASABI [42] infer how perturbations of gene product levels 
propagate through a network. However, many inference approaches identify the relative 
importance of network parameters or connections, instead of yielding parameters that 
can directly be entered into physiological simulations.

Since genes may combine the actions of several transcription factors for their specific 
output behavior, they have been identified with perceptrons or neurons [43–46]. This 
enabled optimizing sophisticated algorithms originally designed for artificial neural net-
works, such as gradient decent methods, to the inference problem [47–49]. Using such 
an approach, a neural network was trained to reproduce a time-series of gene product 
levels [49]. During training, the neural network had to learn both how to simulate the 
ODE system corresponding to the gene network as well as the network topology. Thus, 
it remained a challenge to disentangle network parameters and topology from the coef-
ficients of the neural network.

Here, we report a computer aided interactive gene network simulation tool (CaiNet), 
dedicated for simulation of GRNs including molecular kinetics and for inference of 
steady-state network parameters. We simplified the simulations by determining the 
temporal evolution of each network element isolated from all other network elements 
between fixed time steps, after which the gene product levels are synchronized within 
the GRN. This modular approach enabled us to include local analytical solutions of the 
temporal evolution of a network element such as a gene, thereby speeding up simula-
tion time. For genes, we included local analytical solutions to the time behavior for vari-
ous different regulatory promoter motifs and variable numbers of rate-limiting steps in 
gene product synthesis. In addition, we provided local analytical solutions for elemen-
tary biochemical reactions such as dimerization, that can be combined to model com-
plex biochemical reaction networks. We tested CaiNet by comparing its simulation 
of a repressive gene cascade of four genes to the solution of the global, network-wide 
ODEs by an ODE solver and to a full stochastic Gillespie simulation. Further, we verified 
that CaiNet is able to reproduce noise-induced bi-stability and oscillations occurring 
in a positive and a negative autoregulatory feedback loop including enzyme-mediated 
degradation. For parameter inference, CaiNet uses a recurrent network approach to 
directly infer steady-state parameters. We tested CaiNet for up to 10 densely connected 
genes and find that CaiNet is able to recover the network topology and the network 
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parameters well. The combination of a simulation algorithm and an inference algorithm 
directly yielding physiological simulation parameters will remove hurdles in understand-
ing experimental results and investigating associated GRNs.

Results
Setup of GRNs with the graphical user interface of CaiNet

GRNs commonly comprise several elements: external signaling inputs, biochemical 
reactions and regulatory motifs including several genes (Fig. 1a, upper panel). In CaiNet, 
we characterized each element by certain structural and kinetic parameters (Fig.  1b). 
Inputs may be any kind of molecule. Each molecule input can be assigned a time course 
of molecule abundance, which might be for example sinusoidal or rectangular (Fig. 1c). 
Complex biochemical reactions can be set up by combining a certain set of elementary 
reactions [23]. In CaiNet, this set comprises homodimerisation, heterodimerisation and 

Fig. 1  Implementation of GRNs in CaiNet. a Sketch of an exemplary GRN. GRNs in CaiNet may comprise 
elements of (extra)cellular input signals, elements of basic bi-molecular reactions combined to more complex 
biochemical reactions and gene elements combined to regulatory motives. b Sketch of the reaction rates 
entering the exemplary GRN. CaiNet provides analytical solutions to the evolution of molecule numbers in 
basic biochemical reactions and analytical effective two-state solutions of molecule numbers of different 
promoter structures of genes, which all are included into the unique modular simulation approach of CaiNet. 
The user can assign time profiles of input elements and reaction rates of bi-molecular reactions and genes. 
c Exemplary time trajectories for input elements. d Sketch of promoter structures implemented in CaiNet. 
e Sketch of the layout of elements including their kinetic parameters of the exemplary GRN in b set up in 
CaiNet via a GUI. f Sketch of the knockout tool applied to the exemplary GRN. The parameters of elements 
can be altered to simulate experimental conditions such as knockdown or knockout experiments
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a transformation of a species by an enzyme. For example, formation of a homotetramer 
can be implemented by combining the homodimerization of a monomer and a subse-
quent homodimerization of the homodimer. We modeled genes by two states, an on-
state and an off-state [50], and a promoter with a certain number of binding sites for 
transcription activators or repressors (Fig. 1b, d). The gene switches to the on-state with 
the effective rate λeff upon association of activating transcription factors according to the 
regulatory logic of the promoter, and switches to the off-state with the effective rate µeff 
upon their release (Fig.  1d and “Methods” section). Transcription repressors keep the 
gene in the off-state (“Methods” section). In the on-state, the gene product is produced 
with the production rate ν. The gene product can either be understood as mRNA or as 
protein. In the latter case, we initially simplified the process of protein production by 
combining transcription and translation of mRNA into a common rate-limiting step 
with one production rate. However, we introduced the possibility for an additional delay 
to account for production processes such as splicing and translation (see below). Moreo-
ver, gene products are associated with a degradation rate.

We designed a graphical user interface (GUI) for CaiNet to facilitate setting up com-
plex GRNs (Fig.  1e), inspired by an effort to find general and understandable repre-
sentations of biological networks [51]. With this GUI, icons representing the network 
elements ‘input’, ‘bi-molecular reaction’ and ‘gene’ can be connected intuitively using 
activating or inhibiting links represented by wires. For each network element, relevant 
structural and kinetic parameters can be defined (Fig. 1e and Table 1). In addition, we 
implemented means to manipulate a genetic network by knocking down one or more 
genes (Fig. 1f ). For a knocked down gene, the transcription rate is adjusted to a low value 
or zero.

Computer‑aided implementation of network simulations

To simulate GRNs with CaiNet, we developed a modular approach of solving the sys-
tem of differential equations associated with the GRN or of simulating the stochastic 
behaviour of genes and of the numbers of gene products. At the heart of this modu-
larisation lies the assumption that changes in molecule numbers within the GRN are 

Table 1  Kinetic parameters of network elements

Element name Symbol Meaning

Hetero-dimerization � Association rate of the two different monomers

µ Inverse half life of the dimer

Homo-dimerization � Association rate of the two monomers

µ Inverse half life of the dimer

Transformation of a substrate by an 
enzyme

� Association rate of the enzyme to the substrate

µ Dissociation rate of the substrate from the enzyme

ν Transformation rate of substrate to product while 
bound to the enzyme

Gene � On-rates of transcription factors

µ Off-rates of transcription factors

ν Product synthesis rate

δ Product degradation rate

β1..N Delays in production
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small during a time step Δt and that it is sufficient to synchronize the numbers of 
molecules between all elements of the network only after each time step Δt. Accord-
ing to this assumption, each network element can be treated as if it was isolated from 
other network elements during Δt. Thus, for each Δt, CaiNet iterates through all 
network elements and calculates the local changes in molecule abundance over time 
for each element using element-specific functions (“Methods” section, pseudo code) 
and the molecule numbers present in the GRN at the beginning of this time step Δt. 
We derived various element-specific functions for bi-molecular reactions and dif-
ferent promoter structures of genes (“Methods” section). To synchronize molecule 
numbers after each Δt, CaiNet calculates the total change in molecule numbers for 
all molecular species by summing over the local changes in molecule numbers of 
each network element. These new network-wide numbers are then used as starting 
values for element-specific calculations during the next time step. Importantly, our 
modular approach enabled simulating different scenarios with increasing level of 
stochastic detail, ranging from an approximate solution of the system of determinis-
tic differential equations associated with the GRN to an approximate solution of the 
corresponding stochastic chemical master equations.

To demonstrate the working principle of our modular approach, we chose a cascade of 
negative regulation comprising four genes (Fig. 2a). In the cascade, each gene encodes a 
repressive transcription factor, which represses the subsequent gene. Such a cascade has 
been shown to exhibit pathologic behaviour, i.e. large fluctuations in gene product levels, 
in presence of stochasticity [52, 53]. We set the number of the first repressive transcrip-
tion factor, which acts as initial input, to a constant value of 100 molecules (high). We 
then determined the numbers of subsequent transcription factors during the simulation. 
In the following, we discuss the different scenarios considering increasing levels of sto-
chastic detail.

Scenario 1 (Fig. 2b, c): In this scenario, we implemented the approximate solution of 
CaiNet to the system of deterministic differential equations associated with the GRN 
of the repressive gene cascade (“Methods” section, Eq. (59)). We modelled the protein 
output of each gene by

where n is the number of proteins, ν is the production rate and δ is the degradation rate. 
Gene elements directly use an analytical solution to calculate the expression level. We 
calculated the probability function of activated expression, a(q Δt), using the expression 
levels from the last synchronization time point, q Δt, and the equilibrium constants of 
transcription factors of the appropriate promoter structure (“Methods” section, Eqs. 
(13) or (16)). According to our central assumption, the probability function a is constant 
during the time interval Δt (Fig. 2b). Thus, we could find an individual local analytical 
solution for each gene element in the network. Using CaiNet, we simulated the gene 
cascade with a fixed set of kinetic rates for the transcription factors (Additional file 1: 
Table  S1) and for three different time steps Δt (Δt = 10  s, 100  s and 1000  s) (Fig.  2c). 
If Δt was too large, the synchronization of transcription factor abundance and thus the 

(1)
ṅ = a(q ·�t)ν − δn ⇒ n(q ·�t) = n(q−1)�t exp(−δ�t)

+
a(q ·�t)ν

δ
(1− exp(−δ�t))
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change in gene activation was delayed. Hence, CaiNet’s solution for the transient behav-
ior did not match the global, network-wide solution of the ODE solver (“Methods” sec-
tion, Eq. (59)) anymore. However, the steady state level was still reproduced correctly. If 

Fig. 2  Demonstration and test of CaiNet using a repressive gene cascade. a Regulatory logic of a repressive 
gene cascade of four genes (left panel) and sketch of the corresponding GRN including transcription 
repressors and gene elements (right panel). The input species (constant level of 100 molecules) and each 
gene product repress the subsequent gene element in the GRN. b, c Simulation scenario 1 of CaiNet with 
deterministic treatment of gene on/off switching and birth/death events of gene products. b Sketches of 
the probability of activated expression of a gene (upper panel) and the corresponding gene product level 
(lower panel) of scenario 1. The activation of a gene is constant within one synchronization time step. After 
each time-step, all gene product levels are synchronized and the activation probabilities of all gene elements 
are updated. c Comparison of CaiNet simulations of the repressive gene cascade according to scenario 
1 performed with different synchronization time steps (red, yellow and purple lines) with the numerical 
solution of an ODE solver (dashed blue line). d, e Simulation scenario 2 of CaiNet with stochastic treatment 
of gene on/off switching and deterministic treatment of birth/death events of gene products. d Sketches 
of the production state of a gene (upper panel, either on or off )) and the corresponding gene product level 
(lower panel) of scenario 2. e Left panel: comparison of a CaiNet simulation of the repressive gene cascade 
according to scenario 2 (red line) with the numerical solution of an ODE solver (blue line). f–j Simulation 
scenario 3 of CaiNet with stochastic treatment of gene on/off switching and birth/death events of gene 
products. f Sketches of the production state of a gene (upper panel, either on or off )) and the corresponding 
gene product level (lower panel) of scenario 3. g Left panel: comparison of a CaiNet simulation of the 
repressive gene cascade according to scenario 2 (blue line) and scenario 3 (red line) with a Gillespie 
simulation (yellow line). h, i As in f, g, but with faster gene on/off switching rates. j As in i, but with a constant 
input level of 1 molecule. Middle and right panels of c, e, g, i, j: histograms and autocorrelation curves of 
respective gene product levels. In panels (c, e, g, i, j) the expression level of the last transcription factor in the 
cascade is shown
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Δt was sufficiently small, the approximation of CaiNet approached the global, network-
wide solution of the system of ODEs associated with the GRN.

Scenario 2 (Fig. 2d, e): We included that genes can stochastically switch between on 
and off states (Fig.  2d). For simplicity, we assumed that genes were switched on with 
rate λ(nTF) upon binding of a transcription factor, and switched off with rate µ upon 
unbinding of the transcription factor. Thus, the switching events are Poisson processes. 
For every time step Δt, we calculated the effective on/off-rates, λ, µ, of the gene using 
the appropriate promoter structures (“Methods” section Eqs. (14) or (17)). According to 
our central assumption, λ, µ, were constant within a time step Δt. In contrast, the gene 
was able to switch states within a time step. To obtain the time points of switching, ti, we 
drew the uniformly distributed random number X and used the current switching rate 
constant

Dependent on the state of the gene, we distinguished between the two equations

Gene elements directly used the corresponding analytical solutions to calculate the 
expression level. Using CaiNet, we simulated the gene cascade with a fixed set of kinetic 
rates for the transcription factors (Additional file  1: Table  S1) and allowed for gene 
switching (Fig. 2e). We observed that protein abundance increased during the gene on-
state and decreased while the gene was off. In combination with stochastic switching 
between these two states, the variance of the expression-level was significantly increased 
compared to the global, network-wide solution of the ODE-solver (Fig. 2e). Correspond-
ingly, while the autocorrelation of the protein output of the gene cascade was constant 
for the solution of the ODE-solver, the autocorrelation for the solution including switch-
ing of genes exhibited a decay since protein levels varied over time (Fig. 2e).

Scenario 3 (Fig. 2f, g): In addition to the switching of genes, we included discretized 
and stochastic production and degradation events (birth and death events) of proteins 
(Fig. 2f ). We initially determined the time points of gene switching according to Eq. (2) 
using constant protein numbers for a given Δt. For each on-period of the gene with dura-
tion τon, we determined the number of birth events nB of gene products by drawing a 
random number from the probability distribution corresponding to protein production:

while the number of degraded gene product is determined deterministically according 
to Eq. (3). We chose this simplification to circumvent a complex probability distribution 
for gene product numbers. For small changes in gene product levels, it should not devi-
ate much from a full stochastic treatment (see below). In a period without production, 
we determined the number of gene products k by drawing a random number from the 
probability distribution to find k gene products after the time interval τoff

(2)ti =
− log(X)

α
where α =

{

�, Gene off
µ, Gene on

(3)
on: ṅ = ν − δn ⇒ n(t) = n0 exp(−δt)+

ν

δ
(1− exp(−δt))

off: ṅ = −δn ⇒ n(t) = n0 exp(−δt)

(4)p(nB) =
(ντon)

nB

nB!
exp(ντon)
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assuming there were n proteins at the beginning of the time interval. Using CaiNet, we 
simulated the gene cascade with a fixed set of kinetic rates for the transcription factors 
(Additional file 1: Table S1), allowed for gene switching, and accounted for birth/death 
events (Fig. 2g). Compared to the case including gene switching alone (scenario 2), the 
variance further increased and approached the variance of a Gillespie simulation of the 
gene cascade considering the promoter structure explicitly and including stochastic 
birth and death events of gene products (“Methods” section).

We further tested the behavior of the gene cascade in a situation where the rates of 
gene switching were much faster than those for production (birth) and degradation 
(death) events (Fig. 2h, i and Additional file 1: Table S1). For scenario 2 with deter-
ministic birth/death events of proteins, fast rates of gene switching underestimated 
the variance in protein levels compared to a global, network-wide Gillespie simulation 
including both stochastic gene switching and stochastic birth/death events (Fig. 2i). 
This indicates that the main contribution to variance in protein levels in this situation 
is due to stochasticity in birth/death events. Accordingly, when we included both sto-
chastic gene switching and stochastic birth/death events in CaiNet (scenario 3), the 
variance in protein levels well approached the variance of the global, network-wide 
Gillespie simulation, despite the simplified treatment of birth and death events in 
CaiNet. Similarly, the autocorrelation of protein output, which characterizes the tem-
poral variation of protein levels, was similar for the protein levels obtained by CaiNet 
with scenario 3 and Gillespie.

At small molecule numbers, the simplification for the on-period of a gene of treat-
ing only birth events stochastically but degradation of gene products deterministi-
cally might produce artifacts. We therefore tested the behavior of the gene cascade 
for small numbers of transcription factors by setting the number of the first repres-
sive transcription factor to the constant value of 1 (Fig. 2j). Again, scenario 2 without 
birth/death events of proteins deviated from a global, network-wide Gillepsie simula-
tion. In contrast, the CaiNet simulation of the low protein situation with scenario 3 
including both gene switching and birth/death events yielded very good agreement 
of the gene product levels and the temporal variation of these levels with the global 
Gillespie simulation. Thus, our semi-stochastic treatment of birth/death events con-
stitutes a very good approximation.

To ensure sound consideration of gene product numbers in all three scenarios, we 
implemented that CaiNet monitors the synchronization time step and returns a warning 
if the change of a gene product, Δn, during one interval violates the criterion

For the transcription rate ν, for example, this leads to the condition

Thus, if ν was the fastest rate constant in the system, choosing the synchronization 
time step Δt < ν−1 ensures small changes in gene elements.

(5)p(k) =

(

n
k

)

exp(−δ · τoff )
k(1− exp(−δ · τoff ))

n−k

(6)
�n < 1

(7)ponν�t < 1
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Consideration of delays

The processes in a cell may give rise to temporal delays. For example, the process of elon-
gation may be considered as a constant delay in gene transcription. We implemented the 
possibility to account for deterministic, constant delays in the response of a network ele-
ment in CaiNet as a shift of the element’s output by a fixed number of synchronization 
steps Δt (Fig. 3a). For example, if the output of a network element is delayed by 10 Δt, 
the element internally stores the value from ten synchronization steps and reports the 
delayed value during synchronization. A limitation of this approach is that delays can 
only be given as multiples of the synchronization time step Δt.

Moreover, we integrated the possibility to account for several rate-limiting steps in 
gene product synthesis. Such delays may occur due to transcription termination, mRNA 
splicing or translation. We modeled each rate-limiting step as a Poisson process with rate 
βi, i.e. with exponentially distributed waiting times. Thus, changes in gene activity are 
blurred if average waiting times are on the order of or slower than gene on/off switching 
processes (Fig.  3b). We only simulated rate-limiting steps deterministically. Therefore, 
Eq. (1) was replaced by an analogous equation including the appropriate number of rate-
limiting steps (“Methods” section, Eqs. (24) to (29)). At the synchronization time step Δt, 
the gene element returns the number of gene products of the corresponding solution.

Consideration of biochemical reactions

We further implemented the possibility to include and combine network elements of 
bi-molecular reactions in CaiNet (Fig.  4). To demonstrate the working principle of 
simulating enzymatic reactions, we chose an example of two enzymes that mutually 
take each others product and catalyze it to each others substrate (Fig. 4a). The differ-
ential equations for the substrate N and the enzyme F that transforms the substrate N 
into the product M are

Fig. 3  Implementation of delays in gene product synthesis in CaiNet. a A deterministic delay, i.e. a shift by a 
constant time-period, is realized by a queue. At time t  , network elements report the expression levels from 
time point t −m�t , where m�t is the time by which the gene product synthesis is delayed. b Rate-limiting 
steps in gene product synthesis are modelled by analytical solutions of the corresponding system of ODEs. 
Such delays modify the shape of the time trajectory of the expression level and slightly delay the maxima of 
expression
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where δ is the degradation rate and ν1 and ν2 are the catalytic rates of the enzymes F and 
G. The association and dissociation rates of the substrate to the enzymes are denoted by 
λ1 and µ1 for N and F and by λ2 and µ2 for M and G. The differential equations for the 
enzyme G that transforms M back into N are

In Eqs. (8) and (9), the molecule numbers and fluxes that are synchronized at the 
end of each synchronization time step Δt are indicated with a circumflex accent. These 
parameters stay constant during each synchronization time step. With this assump-
tion, we were able to decouple the differential equations of both bi-molecular ele-
ments and solve them separately (“Methods” section). The resulting product numbers 
are reported as output of the bi-molecular elements to all other network elements 
after each synchronization step Δt. We tested how the duration of the synchroniza-
tion time step Δt influenced the accuracy of the results using a fixed set of reaction 
rates (Additional file 2: Table S2) and Δt = 1 s or 10 s (Fig. 4b). Similar to the case of 
gene elements, if Δt was too large, synchronization of reaction products was delayed 
compared to a global ODE solution and approximation of the transient behavior of 
the global ODE solution was poor. However, the steady state level was still repro-
duced correctly independent of the size of the time step, since the correct system of 
differential equations was used to calculate the outputs of the bi-molecular reaction 

(8)
Ṅ = −δ1N − ν1 f̂ + ν2ĝ

ḟ = �1(N̂ − f )(F − f )− (δ1 + µ1 + ν1)f

(9)
Ṁ = −δ2M + ν1 f̂ − ν2ĝ

ġ = �2(M̂ − g)(G − g)− (δ2 + µ2 + ν2)g

Fig. 4  Implementation of biochemical reactions in CaiNet. a Sketch of an exemplary biochemical reaction 
comprised of two basic enzyme turnover reactions (upper panel). The two enzymes mutually take each 
others product and catalyze it to each others substrate. During each time step, molecule numbers and 
molecule fluxes need to be synchronized to ensure mass conservation (lower panel). b Comparison of time 
trajectories of product levels of the biochemical reaction sketched in a simulated with CaiNet using two 
different synchronization time steps �t  (yellow/purple and green/blue lines) with the numerical solution 
of an ODE solver (dashed blue/dashed red lines). If the time-step �t is too large, the transient behavior of 
CaiNet deviates from an ODE-solver. If the time-step �t is sufficiently small, the transient behavior of CaiNet 
approximates the ODE-solver well
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elements. If Δt was sufficiently small, the approximation of CaiNet approached the 
global solution of the associated system of ODEs using a numerical solver.

To ensure a sound consideration of molecule abundance using the flux among ele-
ments, we implemented that CaiNet returns a warning once the difference in flux Δj 
between start and end time of the synchronization interval violates

CaiNet reproduces noise‑induced bi‑stability and noise‑induced oscillations in GRNs

GRNs often combine both gene regulatory motives and biochemical reactions. To fur-
ther test the performance of CaiNet, we thus applied it to two heterogeneous GRNs. 
Both exhibited complex dynamic behavior in presence of stochasticity, as before with 
the repressive gene cascade.

As first example of a heterogeneous GRN, we chose a network including a positive 
autoregulatory feedback loop combined with enzyme-coupled degradation (Fig. 5a, Eq. 
(60) in “Methods” section and Additional file 3: Table S3). Recently, noise-induced bi-
stability of such a network has been studied using a new mathematical method, linear 
mapping approximation, which is able to reproduce even critical dynamic characteristics 
of GRNs [54]. We verified presence of noise-induced bi-stability in our network with a 
global Gillespie simulation (Fig. 5b). A CaiNet simulation of scenario 2, where only gene 
switching is treated stochastically but transcription of RNA and protein birth/death 

(10)�j�t < 1

Fig. 5  CaiNet recovers noise-induced bi-stability and oscillations. a Sketch of a positive autoregulatory 
feedback motive combined with enzyme-mediated degradation. b Left panel: comparison of a CaiNet 
simulation of the positive autoregulatory feedback motive according to scenario 2 (blue line) and scenario 3 
(red line) with a Gillespie simulation (yellow line). Right panel: histogram of respective gene product levels. 
c Sketch of a negative autoregulatory feedback motive combined with enzyme-mediated degradation. d 
Left panel: comparison of a CaiNet simulation of the negative autoregulatory feedback motive according to 
scenario 2 (blue line) and scenario 3 (red line) with a Gillespie simulation (yellow line). Right panel: Fourier 
transformation of the time traces in the left panel
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events are treated deterministically, did not reproduce this bi-stability. In contrast, when 
we included stochastic gene switching and stochastic transcription and birth/death 
events in the CaiNet simulation (scenario 3), the fluctuations in protein levels agreed to 
the fluctuations of the global, network-wide Gillespie simulation (Fig. 5b). Small devia-
tions in the distribution of protein numbers remained for this heterogeneous GRN, since 
enzymatic reactions are only considered deterministically in CaiNet (Fig. 5b). Overall, 
CaiNet well recovered noise-induced bi-stability of the GRN.

We further compared the time necessary to simulate this positive autofeedback GRN. 
One day of simulation time took 0.07 s for deterministic CaiNet simulations (scenario 
1), 0.08  s for CaiNet simulations including stochastic gene switching (scenario 2) and 
0.18  s for CaiNet simulations including both stochastic gene switching and stochas-
tic transcription and birth/death events of the gene product (scenario 3). A network-
wide Gillespie simulation implemented in Matlab took 2 s. We note however, that the 
Gillespie-Simulation was specifically written and optimized for the positive autofeed-
back GRN while CaiNet is a framework for general GRNs.

Second, we applied CaiNet to a heterogeneous GRN including a negative autoregu-
latory feedback loop combined with enzyme-coupled degradation (Fig.  5c, Eq. (61) in 
“Methods” section and Additional file 3: Table S3). A similar network has been shown 
to exhibit noise-induced oscillations by using slow-scale linear noise approximation 
[55]. The CaiNet simulation of our network using only stochastic treatment of gene 
switching (scenario 2) settled at a constant steady state, after quickly decaying oscilla-
tory transient behavior (Fig. 5d). In contrast, a global Gillespie simulation considering 
full molecular stochasticity revealed continuous, noise-induced oscillations, as expected. 
Similarly, when we considered both stochastic gene switching and stochastic transcrip-
tion and birth/death events (scenario 3), the CaiNet simulation exhibited continu-
ous noise-induced oscillations (Fig. 5d). As before, the CaiNet simulation did not fully 
reproduce the protein levels of the Gillepsie simulation due to deterministic treatment 
of the enzyme reaction. However, CaiNet well recovered the periodicity of the oscilla-
tions as revealed by a Fourier transformation of the simulated time trace (Fig. 5d). Over-
all, CaiNet simulations considering both stochastic gene switching as well as stochastic 
birth/death events of the gene product well recovered complex dynamic behavior of het-
erogeneous GRNs including both gene regulatory motives and biochemical reactions.

Inference of GRNs with a neural network approach

We took advantage of the modular approach of CaiNet to facilitate inference of kinetic 
rates of network elements and the topology of a GRN by using a gradient method 
originally designed to train recurrent neural networks. The analogy between GRNs 
and neural networks (NNs) has been pointed out before, by discussing genes as infor-
mation processing units [43–46]. Accordingly, we directly identified each network 
element and its divers physiological steady-state input and output parameters with a 
unique perceptron. Thus, we could directly interpret the GRN laid out in CaiNet as a 
NN. This identification enabled us to apply a training method designed for recurrent 
NNs to the GRN, and the process of training corresponded to the process of infer-
ence of network parameters. As experimental ground truth, several known steady 
state measurements of gene product levels including different input conditions of the 
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unknown network or knockout experiments of one or several genes may be taken. 
During the inference process, we minimized the difference between the current net-
work behavior and the experimental ground truth by optimizing steady-state param-
eters of the GRN. In particular, we used a back-propagation algorithm introduced for 
recurrent NNs, which does not perform a global gradient descent step for all nodes 
in the network, but rather performs a local gradient decent and propagates remain-
ing errors to other nodes [56] (“Methods” section). The modular layout of the GRN 
in CaiNet resulting from our central assumption facilitated calculating this gradient.

For an initial proof-of-concept, we applied the process of inference to a network of 
three genes, for which we assigned a set of reaction rates (Additional file 4: Table S4) 
and activating or repressing connections between the genes (Fig. 6a). We then used 
CaiNet to simulate the ground truth behavior of the GRN for two different inputs. 
The resulting expression levels served as measurements for the proof-of-concept 
inference. For simplicity, we only inferred the equilibrium constants of transcription 
factor binding, i.e. of on- and off-switching of the genes, while leaving production 
and degradation rates fixed. We assigned false starting values for the equilibrium con-
stant of each gene (Fig. 6a), simulated the resulting network behavior and calculated 
the difference to the two measurements of the ground truth network. Next, we iter-
atively applied the adapted gradient method until the difference between simulated 
and ground-truth values dropped below a certain threshold (“Methods” section). 
During each iteration, the parameters in the guessed network were changed such 
that the difference between simulated and ground-truth values became smaller. These 
changes of parameters propagate through the network. Due to feedback loops in the 
network structure, such a change may cause worse performance of the guessed net-
work. Therefore, the distance between ground truth and guessed network may oscil-
late before reaching a stable value (Fig. 6b–d). The resulting values for the equilibrium 
constants and thus the performance of the network were well regained during the 
inference process (Fig. 6a).

Next, we applied our inference approach to multiple different networks with N = 5 
to 10 genes. To generate these networks, we set up fully connected networks with 
N genes, i.e. that have N·(N − 1) connections (Fig.  6e). To obtain a specific ground 
truth network, we randomly modified the fully connected network. For each connec-
tion, we determined whether it was deleted by comparing a random number with a 
deletion probability pdelete, such that on average N·(N − 1)(1 − pdelete) connections 
remained. For each equilibrium constant of transcription factor binding, i.e. of on- 
and off-switching of a gene, we drew a random value out of a probability distribution 
spanning over two orders of magnitude between 1e−3 and 1e−2. As a result of these 
two steps, we obtained a series of networks with N genes and randomly chosen topol-
ogy and gene switching kinetics. Each series consisted of 12 networks, which served 
as ground truth networks.

To generate measurements for the inference process, we used CaiNet to simulate 
the expression levels of each gene of a network under different conditions. Here, we 
knocked out each gene in a given ground truth network one at a time and simulated 
the resulting expression levels of the other genes. This resulted in a set of N2 measure-
ments, which we used as training data set in the inference process. Such large training 
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data sets enabled inferring the actually implemented connections of the ground truth 
network when starting the inference process from the fully connected network. We 
repeated this process for each ground truth network in the series of networks with N 
genes.

We then trained the fully connected, non-randomized, starting network with the 
gradient descent method on a measurement dataset of a specific network (“Meth-
ods” section). During the inference process, CaiNet did not explicitly delete connec-
tions. Rather, the equilibrium constants of unneeded or contradictory connections 
approached zero. We interpreted a connection as deleted, if its equilibrium constant 
was smaller than 1e−4. With equilibrium constants smaller or equal to this value, 

Fig. 6  Inference of GRNs with CaiNet using a recurrent network training approach. a Demonstration of the 
inference procedure using a GRN comprising an input element and 2 genes. Left panel: sketch of the ground 
truth network. The equilibrium constants of transcription factor binding and gene product levels resulting 
from two different input levels (I and II) are depicted. Middle panel: sketch of the first training cycle. Based 
on the difference between a guessed network and the ground truth network and the gradient of the gene 
response functions, CaiNet iteratively adapts the parameters of the network until the expression levels of 
the guessed network match the ground truth values. Right panel: sketch of the trained network. Trajectories 
of the gene product levels of gene 1 (blue) and gene 2 (red) for input level I (b) and input level II (c). d 
Trajectories of equilibrium constants of transcription factor binding. e Sketch of the procedure to evaluate 
the inference approach. A ground truth network is generated by randomly omitting gene connections of a 
fully connected network and assigning equilibrium constants of transcription factors. Gene product levels 
simulated for the ground truth network are used to train a fully connected network. f Percentage of true 
positive gene connections (agreement between trained and ground truth network) versus percentage of 
false positive gene connections (exist in trained but not in ground truth network) for GRNs of 5 to 10 genes. 
Error bars denote s.d. of the training results of 12 different randomly generated networks. Inset: Histogram of 
relative errors (normalized difference in equilibrium constants between trained and ground truth network)
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the affinity of the corresponding transcription factor is too weak to regulate the 
expression level of the respective gene. We repeated this process of inference for each 
ground truth network in the series of networks with N genes.

To quantify the performance of the inference approach, we counted the number of 
true positive and false positive connections of a trained network, as compared to the 
ground truth network topology (Fig. 6c and Additional file 5: Table S5). For networks of 
N = 5 to 10 genes, the false positive fraction was on average ≈ 20%, and the true positive 
fraction was ≈ 90%. We further quantified the inference of the equilibrium constants by 
calculating the difference between ground truth and inferred value and normalized this 
with the ground truth value (Fig. 5c, Inset). On average, the relative error of equilibrium 
constants was ≈ 1%.

Discussion
CaiNet is designed to assist users in setting up and simulating complex GRNs at molecu-
lar detail. Simplifying the process of setting up networks, we designed gene elements 
to assume a two-state behaviour with off and on state of the gene and with a variable 
number of successive production and processing rates and a degradation rate of the gene 
product. After assigning the promoter structure and number of successive gene synthe-
sis rates, CaiNet assigns the corresponding local analytical solutions or stochastic mod-
els to the gene elements without further input by the user. This is possible since we treat 
each gene element isolated from other network elements between two synchronization 
time steps.

Our modular algorithm enables adding more and more realistic kinetic behaviour and 
noise in molecule abundance to initial deterministic solutions, since the local analytical 
treatment of the two-state model and gene product synthesis of a gene element can be 
readily replaced by a stochastic treatment of gene on/off switching and stochastic prod-
uct synthesis for each gene. Thus, it is possible to quickly assess the effect of stochastic-
ity on the behaviour of a network. Another great advantage of the modular approach of 
CaiNet is that new GRNs that follow the implemented regulatory structure can be set up 
and simulated very quickly.

Simulations of the modular stochastic-deterministic elements in CaiNet may be fast 
compared to the Gillespie method. The time increment of a Gillespie simulation depends 
on the fastest rate in the system, which often scales with the abundance of a reactive spe-
cies. In contrast, the synchronization time step of CaiNet has to be adjusted such that 
changes in the abundance of the species are small within this time step, which allows for 
longer time steps. In addition, since gene elements are decoupled in CaiNet, it is possible 
to distribute the calculations to multiple processor cores. Moreover, the CaiNet algo-
rithm enables fast transitions between deterministic and stochastic simulations. This 
in principle allows approximating parts of a large GRN deterministically, while treating 
others stochastically.

The precalculated analytical solutions applied in CaiNet set a limit for the generality 
of modelling biological networks. For now, we implemented modelling of genes only 
with two states and a few promoter structures. We further assumed a direct relation-
ship between transcription factor binding and activation of a gene. Epigenetic alterations 
to the gene locus or further steps such as recruitment of the transcription machinery 
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are not modelled explicitly. In principle, new network elements with further promoter 
structures or more complex multistate models can be implemented in CaiNet as special-
ized effective two-state models. It has been found that such effective models are suitable 
to well describe the histogram of mRNA levels of a cell population [57]. Nevertheless, 
single-cell experiments revealed an effect of cell size, cell division and DNA content on 
the kinetics of gene transcription and mRNA content, for example in dosage compensa-
tion after DNA replication [58, 59]. Accordingly, the two-state model has been extended 
to include such effects [58]. Recently, a more comprehensive and analytically tractable 
stochastic model of mRNA dynamics has been devised [60]. In the future, incorporating 
such complex models will enable enhancing CaiNet to arrive at more and more realistic 
simulations of GRNs.

While CaiNet is optimized for setting up GRNs and simulating stochastic processes in 
gene product synthesis, biochemical reactions can also be implemented to account for 
molecular signalling pathways and reaction cascades that are oftentimes connected to 
GRNs. For these pathways, we did not implement stochastic fluctuations in the expres-
sion levels, since biochemical reactions typically are fast compared to the kinetics of gene 
on/off switching. Due to this simplification, some deviations in gene product levels com-
pared to a Gillespie simulation may occur. However, even complex dynamic behaviour 
such as noise-induced bi-stability or oscillations were well recovered by a CaiNet simu-
lation that considered both stochastic gene switching and stochastic birth/death events 
of the gene product. For biochemical reactions, CaiNet’s elements are limited to dimeri-
zation reactions and enzyme-mediated transformations of biomolecules. These basic bi-
molecular reactions can be combined to more complex biochemical reactions. However, 
biochemical reactions with more complex response functions or hill coefficients larger 
than two are not implemented and require calculating new CaiNet elements.

CaiNet is able to infer GRNs from steady state expression levels. The inferred param-
eters are therefore limited to equilibrium constants. Since it is challenging to define 
a gold-standard for inference methods [42, 61], we refrained from comparing CaiNet 
with other inference methods, such as previously attempted in the DREAM challenge. 
Instead, we used a comprehensive randomized approach to evaluate the performance 
of CaiNet. Our simulations indicate that if each gene in a network is knocked out indi-
vidually, the resulting gene product levels provide sufficient data to infer the topology 
and parameters of the network. A limit for the size of the inferred network is given by 
the computation time of the recurrent network algorithm and by the amount of known 
features of the GRN. Importantly, the inferred equilibrium constants directly correspond 
to physiological parameters of the GRN and therefore directly allow for subsequent for-
ward simulation of the inferred GRN.

Conclusion
We provide a user-friendly framework, CaiNet, to simulate GRNs at molecular detail 
and to infer the topology and steady-state parameters of GRNs. In CaiNet, biochemical 
reactions and genes with various regulatory logics can be combined to complex GRNs, 
for which the temporal progression of gene product levels is simulated. Inversely, experi-
mental steady-state measurements of expression levels can be used to infer the underly-
ing GRN. The combination of a forward simulation tool and inverse inference tool in 
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the single package CaiNet may facilitate the process of evaluating biologically relevant 
GRNs and interpreting associated measurement results.

Methods
Pseudo code of network simulations by CaiNet

Effective rates given by the promoter structure

Activation by a single transcription factor

For the most simplified case of activation of a gene we assume that a promoter is acti-
vated once a transcription factor (TF) binds. This means that the on-rate is given by the 
arrival rate λeff of the TF at the promoter. Once a TF has arrived at the Promoter the 



Page 19 of 30Hettich and Gebhardt ﻿BMC Bioinformatics           (2022) 23:13 	

gene is ‘on’ for the time 1/µeff. This time may vary depending on the TF and the promoter 
of the gene. If not otherwise stated we assume that the binding time of the TF, 1/µ, cor-
responds to this on-time.

where nTF is the number of transcription factors and λ0 is the arrival rate of a single tran-
scription factor.

Promoter with AND‑logic

The AND-logic refers to a promoter that is only activated if TF1 and TF2 up to TFN are 
bound (Fig. 2d). Once a single TF leaves, the activation criterion is immediately violated 
and the promoter is off. Therefore, the off-rate µeff of the promoter is the sum over all off-
rates µTFi of the TFs.

Combinatorically, we can also write down the probability of the promoter to be on as 
the product of the probability of all TFs to be bound

where λTFi = λTFi,0 nTFi is the arrival rate of a TF at the promoter. From pon,eff and µeff, we 
can calculate the on-rate of the promoter

Promoter with OR logic

When a promoter is active if TF1 or TF2 up to TFN or a combination of all is bound, we 
refer to this promoter as OR-logic (Fig. 2d). We start the calculation of effective rates 
with the on-rates of individual TFs, λTFi. Since the arrival of any TF is enough to activate 
the promoter, the on-rate is

The probability to be on can be calculated combinatorically with pon,TFi implicitly 
defined in (13)

With (14) we find the effective off rate of the promoter

(11)
�eff = nTF�0

µeff = µ

(12)µeff =

N
∑

i=1

µTFi

(13)pon =
∏

i

pon,TFi =
∏

i

�TFi/(�TFi + µTFi)

(14)�eff = pon/(1− pon)µeff = Kµeff

(15)�eff =
∑

i

�TFi

(16)pon = 1− (1− pon,TF1)(1− pon,TF2)...(1− pon,TFN )

(17)µeff = �eff (1− pon)/pon
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Competitive repression

We now enhance all promoters developed above by an additional feature, which is the 
blocking of the promoter by a repressor. We assume that the promoter cannot be acti-
vated once a repressor is bound. Once a gene is activated however, the repressor does 
not abort expression. Therefore, the repressor directly affects the effective on-rate of an 
arbitrary promoter while the off-rate remains unchanged

To proof this, we write down the differential equations describing the change in the 
blocked and free promoter populations. We denote blocked promoters with b, free but 
inactive promoters with f and active promoters with a

Assuming that the changes in the repressor-population are small, we find

If we now calculate the sum of blocked and unblocked promoters, we obtain

We add up Eq. (19), plug the result in (21) and obtain

From this result we conclude for the new effective rate modified by the repressor

This is equivalent to Eq. (18) and the proof is complete.

Gene expression including delays

In a simplified approach, we considered one rate-limiting step with rate constant ν for 
synthesis of the gene product. This assumption neglects the fact that certain processes 
in gene product synthesis may introduce a delay between initiation of product synthesis 
and availability of the synthesized product, e.g. elongation of RNA, termination of tran-
scription, initiation of translation, elongation of the protein and termination of transla-
tion. In addition, the mRNA needs time to be transported to ribosomes and might be 
subject to posttranslational modifications. To account for such processes in gene prod-
uct synthesis, we included additional rate-limiting steps corresponding to Poisson pro-
cesses with rates β1…βN.

To determine the resulting function n(t), we solve the general system of ODEs for an 
arbitrary number of delay processes. Using the switching function a(t) of a single gene, 
we arrive at the system of differential equations

(18)
�eff ,repressor = �eff · poff ,Repressor

µeff ,repressor = µeff

(19)
ḃ = −µRb+ �Rf

ḟ = µRb+ µeff a− �eff f − �Rf

(20)b =
�R

µR
f = KRf

(21)p = b+ f = (1+ KR)f

(22)ṗ = µa−
�eff

1+KR
p

(23)�eff ,repressor = �eff (1+ KR)
−1
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where cN represents the output expression level of the gene. Our first step to solve the 
system for cN(t) is to calculate the Laplace transform of all equations in (24). The result 
for the first and the i-th equation is

where p the transform variable and ã is the Laplace transform of a. With these results we 
can easily find an equation for the Laplace-transform of the final product cN

Before we calculate the inverse Laplace transform to obtain cN(t) we simplify the 
denominators in (26) by partial fraction composition with the coefficients αi

For few delays this simplification can most easily be verified by plugging in αi and 
rewriting the right hand side of (27). For a high number of delays the result can be 
derived by the well-known technique of partial fraction decomposition. We plug this 
result in (26) and obtain

We next use the multiplication theorem for the Laplace transform and find

Training of recurrent regulatory networks

We assume that steady state expression levels for a subset of species of a GRN are given. 
Our goal is to infer parameters characterizing the steady state behaviour of the network 
from this information. Importantly, since we work with steady state information, our 
approach is limited to the inference of equilibrium constants rather than kinetic rate 
constants. To infer these constants, we apply a gradient method particularly design for 

(24)

ċ1 = a(t)ν − β1c1

ċ2 = β1c1 − β2c2

...

ċN = βN−1cN−1 − βNcN

(25)
c̃1 =

1

p+ β1
νã

c̃i =
βi−1

p+ βi
c̃i−1

(26)c̃N =

∏

i=1..N−1 βi
∏

i=1..N (p+ βi)
νã

(27)

∏

i=1..N−1 βi
∏

i=1..N (p+ βi)
=

∑

i

αi

p+ βi

where αi =

∏

n=1..N−1 βn
∏

n�=i (−βi + βn)

(28)c̃N = νã
∑

i

αi

p+ βi

(29)cN =
∑

i

αiν

∫

exp(−βi(t − t ′)) · a(t ′)dt ′
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recurrent network topologies [56]. Once these equilibrium parameters are inferred, the 
temporal evolution of the network can still be simulated.

We start by writing down the minimization problem for the objective function W(φ) 
of the difference between the current values X and the target expression levels T of the 
network. The objective function shall be minimized by varying the parameters of the 
GRN, φ = {λ, µ, ν, δ}.

where we used the l2-norm of the distance between target expression level and corre-
sponding simulated values as a loss-function for the i-th element of the training data set.

To obtain the gradient for a parameter φj ∈ φ we calculate the derivative of the objec-
tive function with respect to φj and obtain

Using the delta rule introduced by Pineda et al. [56], we find a step size for the param-
eter φj

where we use the empirical parameter η to scale the step size. In the above equation, 
the derivatives of xi with respect to φj are unknown. To derive a formula for Δφj, we in 
the following formally work on a generic system of ODEs corresponding to a GRN.

The time evolution of all expression levels X = {x1, …, xi}, is given by the set of differ-
ential equations ẋ = F(x) . To obtain the missing derivatives we take the total derivative 
with respect to φj of the steady state case 0 = F(X). We obtain

In this equation we recognize the partial derivative of xk with respect to φj. Impor-
tantly, the system of equations is linear with respect to this derivative. We introduce the 
abbreviation

With this abbreviation, we can rewrite (33) as a linear system of equations for the 
derivatives of xk with respect to φj.

By introducing a new variable z, we can make the step of solving this system of ODEs 
independent from the parameter φj, such that we only need to solve the system once in 

(30)min
ϕ>0

W (ϕ) where W =
1

2

∑

i

(xi − Ti)
2

(31)
∂

∂ϕj
W =

∑

i

(xi − Ti)
∂xi

∂ϕj

(32)�ϕj = −η ·
∑

i

(xi − Ti)
∂xi

∂ϕj

(33)
d

dϕj
F(ϕj , xi) =

∂F

∂ϕj
+

∑

k

∂F

∂xk

∂xk

∂ϕj
= 0

(34)Lik =
∂Fi

∂xk

(35)−
∂F

∂ϕj
= L

∂xk

∂ϕj
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order to obtain the gradients for all parameters in φ. This variable z is characterized by 
the equation

We plug this equation in (32) and identify z by introducing the identity matrix. We 
obtain

To calculate this gradient using a network set up in CaiNet, we need to calculate the 
derivatives of the differential equations ∂F/∂ϕj and the derivatives ∂xk/∂ϕj . Since the 
parameter ϕj and the species xi only occur in a single network element, each network 
element can return these derivatives independently of other elements in the network.

For a promoter with or-logic, the differential equation is

where Aj is the set of all transcription factors that activate the element j . We now take 
the derivative of the steady state equation with respect to �k and obtain

where �ik is the Kronecker delta. From this equation we can identify the variables that 
the network element returns to calculate a gradient decent step:

For a complete gradient descent scheme, we first obtain the steady state expression 
levels by simulating the network with CaiNet until all elements have reached a steady 
state. Next we use Eq. (37) to calculate the change for all parameters in φ based on the 
derivatives above and the difference between ground truth expression levels and simu-
lated expression levels. Using the new parameters, we again simulate the steady state 
expression levels. We proceed in this manner until an abortion criterium is met. This 
abortion is W < b , i.e. that the sum of all differences between ground truth and expres-
sion levels of the trained network are smaller than an upper bound b.

Chemical reactions

In the following we derive analytical solutions for the elementary reactions ‘homo-
dimerization’, ‘hetero-dimerization’ and ‘transformation of a species by an enzyme’. 

(36)z
T = (x − T)TL−1 ⇔ L

T
z = (x − T)

(37)�ϕj = −η · (x − T) · L−1
L
∂xi

∂ϕj
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∂F

∂ϕj

(38)
dnj
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2
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We then use these analytical solutions to couple multiple elementary reactions to 
obtain more complex biochemical reaction networks.

Hetero‑dimerization

We start with the hetero-dimerization of the two species n1 and n2 that forms the species 
f  . For a closed system of these three species the change in f  over time is

where � is the association rate of the two dimerizing species and µ is the dissociation 
rate of the dimer. The rates δ1 and δ2 correspond to the degradation of the monomers n1 
and n2 respectively. The law of mass conservation yields equations for the species n1, n2

Plugging in the law of conservation we obtain

To account for coupling to other elementary systems, we introduce the flow jin that 
represents flux of the species f  from other elements into the element at hand. The new 
differential equation for f  is

Next, we solve this equation for f (t) for an initial value of f0 . We start by calculating 
the fixed points (defined by ḟ = 0 ) of f  . The corresponding quadratic equation yields 
the fixed points f1, f2

where K = � · (µ+ δ1 + δ2)
−1 . Using these fixed points, we can rewrite Eq. (44) as

Integration of this ODE yields

Since the reaction consumes the species n1, n2 , we need to calculate the flux of the 
respective elements into the species f  . This flux is calculated by

(41)ḟ = �n1n2 − (δ1 + δ2 + µ)f

(42)
N1 = f + n1

N2 = f + n2

(43)ḟ = �(N1 − f )(N2 − f )− (δ1 + δ2 + µ)f

(44)ḟ = �(N1 − f )(N2 − f )− (δ1 + δ2 + µ)f + jin

(45)f1,2 =
N1 + N2 + K−1 ±

√

(

N1 + N2 + K−1
)2

− 4N1N2 + jin�−1

2

(46)ḟ = −�
(

f − f2
)(

f − f1
)

(47)

f (t) = f1 +
(

f2 − f1
) u

1+ u

u =
f0 − f1

f2 − f0
exp(−kt)

k = �
(

f2 − f1
)
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During each synchronization time-step, these fluxes are reported to the network ele-
ment representing the corresponding species.

Homo‑dimerization

The differential equations for a homo-dimerization are

where � is the association rate of the two dimerizing monomers and µ is the dissociation 
rate of the dimer. The rate δ1 corresponds to the degradation of the monomers N  . The 
shape of this equation is similar to the heterodimer case. Thus, by setting

we can reuse our solution (47) to calculate the number of dimers and (48) to calculate 
the flux out of the monomer into the homodimer. During each synchronization time-
step, this flux is reported to the monomer element.

Enzyme kinetics

In case of a dimerization with an enzyme, the substrate can be subject to a reaction cata-
lysed by the enzyme. Here, the species m is produced.

where � is the association rate of substrate to enzyme and µ is the dissociation rate of the 
substrate-enzyme complex. The rates δ1 , δ2 and δ3 correspond to the degradation of the 
substrate n1 , degradation of the enzyme n2 and degradation of the product respectively. 
The rate ν is the transformation rate of substrate to product. The shape of this equation 
is similar to the heterodimer case. Thus, by setting

we can reuse our solution (47) to calculate the number of enzyme–substrate–complexes 
and (48) to calculate the flux out of substrate and enzyme into the enzyme–substrate–
complex. To obtain the amount of product, we integrate (52) and obtain

(48)
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�t
∫

0

[�(N1 − f )(N2 − f )− (δ2 + µ)f + jin] dt

jin,n2 =

�t
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[�(N1 − f )(N2 − f )− (δ1 + µ)f + jin] dt

(49)ḟ = �(N − 2f )2 − (2δ1 + µ)f + jin

(50)
�= 4�

N1 = N2 = N/2

jin = 2jin

(51)ḟ = �(N1 − f )(N2 − f )− (δ1 + δ2 + ν + µ)f

(52)ṁ = νf − δ3m+ jin

(53)δ1 = δ1 + v
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where

We arrived at this result by reusing our solution (47). During each synchronization 
time-step, m(Δt) is reported to all other elements in the network.

Simulation of the negative feedback cascade

Gillespie simulation

All genes in the cascade have three states, since the promoter structure is not modelled 
with an effective two-state model as in the case of the CaiNet simulation. The promoter 
is empty in the second state. By binding of a transcription repressor the promoter enters 
the first state. This state can only be exited upon unbinding of the transcription repres-
sor. The third state is entered upon binding of a transcription activator

This state model leads to the following system of stochastic reactions. We consider the 
n-th link of the chain. Pn  then is transcriptionally repressed by the gene product of the 
(n − 1)-th link. The n-th link of the chain produces the transcription repressor Rn

We implemented this set of reactions for n = 1, 2, 3, 4.

System of ODEs

For the system of ODEs we do not explicitly simulate the association and dissociation 
of transcription factors to the promoters. Rather, we give the on-probability of the gene. 
The state model (56) corresponds to a competitive repression model of a promoter and 
we can give the on-probability of the n-th link of the chain using (18)

With this on-probability we can give the ODE for the gene product

(54)m(�t) = m0 exp (−δ3�t)+
νf + jin
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[1− exp (−δ3�t)]
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We implemented this set of reactions for n = 1, 2, 3, 4 . For solving the system of differ-
ential equations we used the ode45 solver of Matlab 2019a.

Noise‑induced bi‑stability and oscillations

The positive feedback loop

We simulated a gene that is activated by its own gene product A to transcribe RNA. The 
RNA is translated to yield the transcription factor, which can be degraded spontaneously 
or by an enzyme E.

The simulation used the rate constants given in Additional file 3: Table S3.

The negative feedback loop

We simulated a gene that is repressed by its own gene product R. If R is absent, RNA is 
transcribed and further translated to yield the transcription repressor. The repressor can 
be degraded spontaneously or by an enzyme E.

The simulation used the rate constants given in Additional file 3: Table S3.

Abbreviations
GRN: Gene regulatory network; NN: Neural networks; CaiNet: Computer Aided Interactive Gene Regulatory Network 
Simulation Tool.
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